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Quantitative magnetic resonance imaging (qMRI) non−invasively measures soft tissue structural

properties. However, anterior cruciate ligament (ACL) surgery can leave metal particles in the joint,

producing magnetic susceptibility artifacts that distort regions of MR images. As a result, both

morphological and signal−based measures of the complete ROI are not always possible. The objective of

our study was to train a deep−learning model to correct simulated magnetic susceptibility artifacts

observed post−ACL surgery. It was hypothesized that the signal intensity obtained from the deep learning

corrected artifact regions would not be significantly different from the ground truth.
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The application of deep learning − a powerful but data−intensive subset of machine learning − to smaller

cohorts including extracorporeal membrane oxygenation (ECMO) datasets is challenging. Transfer learning

can boost the performance of deep learning models trained on smaller datasets by pre−training on related

larger datasets. We applied transfer learning to a large intensive care unit (ICU) dataset to predict

in−hospital mortality in a small cohort of patients treated with ECMO.
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The study dataset included 27,192 subjects admitted to one of seven ICUs between 2008 and 2019,

including 4,768 (17.5%) subjects admitted to the to the cardiovascular ICU (CVICU) and 3,086 (11.3%) to

the coronary care unit (CCU). Seventy five (0.3%) subjects were treated with ECMO. In−hospital mortality

in subjects not treated with ECMO was 16.1% and 57.3% in subjects treated with ECMO. The model performed

poorly at predicting in−hospital mortality in subjects treated with ECMO without pre−training, AUC 0.65

(95% CI 0.59−0.73) (Figure 1). However, pre−training on data from any subjects admitted to the ICU not

treated with ECMO significantly improved model performance, AUC 0.82 (95% CI 0.81−0.83). Pre−training

on smaller cohorts of subjects not treated with ECMO in the CVICU and CCU resulted in similar strong

performances, 0.78 (95% CI 0.76−0.79) and 0.80 (95% CI 0.80−0.81) respectively, while pre−training on a

cohort of patients in the neurosurgery ICU resulted in only a minor performance bump.
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Despite the importance of informed consent in healthcare, the readability and specificity of consent

forms often impedes patients' comprehension. Health literacy is linked to patient outcomes, making it

essential to address these issues. This study investigates the use of GPT−4 to simplify surgical consent

forms and introduces an AI−human expert collaborative approach to validate content appropriateness.
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This study intends to analyze COVID−19 data and examine how it affects social life in people. The

study includes a variety of COVID−19 data analysis topics, such as the cooperative use of AI, ML, deep

learning, and the Internet of Things (IoT) in the COVID−19 eradication effort. Additionally, the project

investigates how artificial intelligence and Internet of Things (IoT) techniques might be used to

forecast, identify, and diagnose patients with the novel coronavirus. Using social network analysis and

sentiment analysis techniques, the project will also look into how false information, corrupted data,

and conspiracy theories are spread on social media sites like Twitter. Existing approaches are assessed

through a thorough comparative examination. In the end, the study will offer various data analysis

methods, identify areas for future research, and offer broad guidelines for successfully controlling the

coronavirus and adjusting to the shifting work and living circumstances.
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The study used a thorough and methodical way to look into several COVID−19 data analysis issues. The

survey report starts out by introducing the novel virus and exploring the historical background of

earlier pandemics. The research also examines the function of social media and online activism in the

communication of COVID−19−related information. The study primarily looks at how social media sites

affect the propagation of false information and fabricated virus−related data. The project also examines

the application of machine learning, artificial intelligence, and Internet of Things (IoT) strategies to

attack COVID−19.
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The comprehensive survey on COVID−19 data analysis yielded significant findings across various research
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The traditional medical school education does not include nutrition but may include optional lectures

that pertain to nutrition. However, it can be difficult to find the time to provide in−person nutrition

lectures. In addition, learning cannot be measured if the lecture is not required. The objective

of this Lifestyle Medicine clinical elective for 3rd and 4th year WAMS students is to 1. test if

on−line nutrition lectures with pre− and post−testing will show improvement in scores which could be

used for assessing learning; and 2. provide an in−person session with a dietitian to promote further

understanding of nutrition concepts, when to refer to a dietitian and the role of dietitians in clinical

management of chronic diseases.
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Large−scale multiple perturbation experiments have the potential to reveal a more detailed understanding

of the molecular pathways that respond to genetic and environmental changes. A key question in

these studies is which gene expression changes are important for the response to the perturbation.

This problem is challenging because (i) the functional form of the nonlinear relationship between

gene expression and the perturbation is unknown and (ii) identification of the most important genes

is a high−dimensional variable selection problem. (This paper has been published on Briefings in
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Knee Osteoarthritis (OA) is a leading cause of disability and functional impairment in the United

States. As the articular cartilage is regularly exposed to biomechanical forces from joint impact,

focal cartilage are common. There is a need to develop effective strategies to restore damaged

cartilage tissue. Bone−marrow−derived mesenchymal stromal cells (BM−MSCs) have been extensively

researched in preclinical models of cartilage restoration. However, BM−MSCs have certain limitations.

During late−stage chondrogenesis, BM−MSCs exhibit increased gene expression of common cartilage

hypertrophy−ossification markers. DLX5, a bone−morphogenic protein 2 (BMP−2) inducible transcription

factor and hypertrophy markers, is significantly upregulated in BM−MSCs and in the chondrocytes isolated

from OA patients. The objective of this study is to investigate the therapeutic efficacy of using DLX5

knock−down BM−MSCs as a cell based therapy for attenuating OA.
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Distal−less homeobox 5 (DLX5) knockdown inhibits Osteoarthritis pathway
networks while inciting cartilage repair networks in mesenchymal lineage
cells
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A. 

 
B. 

   
C. 

  
Examples of motif effects on energy. A. The motif which we discovered and labeled 

MEME-ChIP 9 may destabilize RNA sequence reads. (Right) This motif may increase the 

minimum free energy. (Left) This motif may increase the ensemble free energy. B. The 

motif which we discovered and labeled MEME-28 may stabilize RNA sequence reads. 

(Right) This motif may decrease the minimum free energy. (Left) This motif may decrease 

the ensemble free energy. C. The motif which we discovered and labeled MEME-15 may 

not have an effect on RNA sequence read stability. (Right) This motif does not seem to 

affect the minimum free energy. (Left) This motif does not seem to affect the ensemble free 

energy. 
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The growing burden of antibiotic resistant pathogens warrants rapid attention to developing novel

antimicrobial modalities. This is coupled with the heavy cost incurred upon hospitals and patients due

to chronic surgical site infections, with 300k−500k cases occurring annually in the US and a monetary

cost of upwards of $1.5B. The aim of this project is to analyze the cytotoxic effect of a novel

antimicrobial, silver carboxylate, on human cells involved in surgical wounds. Silver carboxylate may

provide an improvement to antibiotics in that silver induces bacterial death in a multimodal fashion,

and the organic moiety improves entry of the silver ion into bacterial cells. We are specifically

investigating the apoptotic versus necrotic mechanism with the goal of inhibiting apoptosis and

improving human cell viability while promoting microbial death.
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resulting in improved cellular viability. Silver carboxylate in the TiO2−PDMS matrix is being studied

for application as a novel antimicrobial coating for surgically implanted materials, to mitigate the

risk of chronic bacterial seeding post−operatively. This innovative biomaterial may also have beneficial

synergistic effects when used conjunctively with current antibiotics.
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Figure 1. Levels of apoptosis in skeletal muscle cells after 24hr condition exposure. Statistically
significant increase in apoptosis seen between the 1x and higher AgCar concentrations as well
as the media and cell blanks. N=24
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In a time of unprecedented mental health care demands, partial hospitalization programs (PHPs) are

crucial to the overall continuum of care. PHPs are intensive programs that fill the gap between

inpatient and outpatient services. They are more comprehensive than weekly outpatient care but allow

for the development of coping skills within community environments rather than in a more restrictive

environment (Vlavianos & McCarthy, 2022). Lifespan has been at the forefront of this model of care for

several decades by providing partial levels of care to children, adolescents and adults (e.g., Musella

et al., 2016; Musella & Hedrick, 2019; Zimmerman et al., 2023). During the COVID−19 pandemic, many of

these programs were adapted for telehealth, leading to innovative models of care beyond the pandemic.

This presentation aims to present research on the effectiveness of the Bradley REACH virtual PHP on

adolescent psychosocial functioning compared to in−person programs.
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inter−patient group statistics were descriptive. The relationship between progerin and survival was
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Study was originally published as 'Plasma Progerin in Patients With Hutchinson−Gilford Progeria

Syndrome: Immunoassay Development and Clinical Evaluation'. Circulation. 2023;147(23), Gordon, et al.

Mean plasma progerin in nonHGPS participants (N=69) was 351±251pg/mL, and in drug−naïve participants

with HGPS (N=74) was 33,261±12,346 pg/mL, reflecting a 95−fold increase (p<0.0001). Lonafarnib treatment

resulted in an average per−visit progerin decrease from baseline of between 35−62% (all p<0.005);

effects were not augmented with pravastatin and zoledronate. Progerin levels fell within 4 months of

therapy and remained lower for up to 10 years. The magnitude of progerin decrease positively associated

with patient survival (p<0.0001). For any given decrease in progerin, life expectancy incrementally

increased with longer treatment duration.
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While following fixed schedules, 39 participants simultaneously wore the Micro Motionlogger actigraph

(Ambulatory Monitoring Inc., Ardley, NY) on their non−dominant wrist and the Actigpatch (Circadian

Positioning Systems, Newport, RI) over the triceps of their dominant arm. Our analyses included 35

participants (21F; 32.9±13.2yrs) who contributed =four nights of data (range: 4−14 [mean: 10] nights).

After matching devices' tri−axial actimetry in one−minute epochs, we derived key non−parametric

parameters of diurnal activity and calculated intraclass correlations to measure agreement. The

non−parametric parameters include interdaily stability (IS), intradaily variability (IV), timing of

the five hours of lowest activity (L5onset) and ten hours of highest activity (M10onset), and overall

relative amplitude (RA).
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Bias in healthcare unfairly impacts lower socioeconomic populations and can be baked into predictive

modeling datasets, especially in multimodal datasets where different biases can pool together. Our

purpose is to develop a model that debiases multimodal Pulmonary Embolism (PE) datasets and to improve

survival prediction (SP) over the current clinical standard of Pulmonary Embolism Severity Index (PESI).
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Table1: Performance of PESI Survival Prediction and Debiased Survival Prediction across the three 
different population bias groups using C-Index. The larger C-Index value means better survival prediction 
performance, and the lower bias is fairer. 

Methods Race Ethnicity Gender 

 Modal Overall White Not 
White 

Bias Overall Latino Not 
Latino 

Bias Overall Male Female Bias 

 PESI 0.669  0.654  0.697  0.043 0.682 0.481 0.687 0.207 0.631 0.739 0.529 0.210 

Debiased 
SP 

Imaging 0.673 0.671 0.578 0.092 0.640 0.692 0.635 0.058 0.635 0.727 0.607 0.120 
Text 0.687 0.679 0.730 0.051 0.714 0.731 0.716 0.014 0.770 0.750 0.813 0.064 
Variable 0.706 0.687 0.784 0.096 0.655 0.538 0.666 0.128 0.615 0.587 0.625 0.038 
Multimodal 0.739 0.735 0.734 0.001 0.733 0.731 0.723 0.008 0.766 0.785 0.763 0.023 
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Mindful eating can decrease maladaptive eating, and may be a good adjuvant to weight management

interventions. Mobile health (mHealth) interventions are viable for youth behavior change and there

is scarce literature on their use. The Unified Theory of Acceptance and Use of Technology (UTAUT)

integrates key predictive constructs for the behavioral intention to use technology. The study's aim

was to assess adolescent perceptions of an mHealth mindful eating intervention, as part of a study to

develop a mHealth mindful eating intervention for adolescents.
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96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

96% of participants answered 'agree'/'strongly agree' to the statement 'Using a mindful eating app will

help me develop a healthier relationship with food,' and 80% answered 'agree'/ 'strongly agree' to the

statement 'I will use a mindful eating app if I have access to it.' Most weights were large (.. > 0.5)

except for facilitating conditions (.. = 0.01), which all teens endorsed (Table 1). The association with

behavioral intention was positive (.. ^ = 0.15, 95% CI [0.07, 0.23]). Reliability was acceptable (0.70).

Inductive codes included attitude, flexibility and overall perception. Deductive codes included easy to

understand, educational, appealing, engaging. Results pointed to app features that adolescents consider

important additions, including closed captions, a colorful interface, text reminders, and gamification.

Interview responses supported the findings from the survey in that participants were overall receptive

to a mindful eating app.

Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:Conclusion:

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Survey data showed internal consistency reliability and concurrent validity. Qualitative data supported

the findings from the UTAUT−based survey.

Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:
Clinical
Implications:

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Use of a mindful eating app for adolescents is acceptable and feasible. Future directions include pilot

testing the mindful eating app in adolescents with overweight/obesity.

Abstract

2023 Lifespan Research Day Abstract Submission Contest

Assessing the acceptability of a mindful eating mobile app for
adolescents



 

 

 



Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category:Research Category: Basic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, InnovationBasic Science, Innovation

Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location:Primary Research Location: Providence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RIProvidence, RI

Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By:Funded By: P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490P20GM103430/ P20GM121344, NIAIG R03AI159776, NIH/NIAID R25, NIH/NIAID R25AI140490

Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):Author(s):

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Josue Marquez, Medical Student, Brown University. Dept of Orthopedics
Anna Rezk, Medical Student, Brown University. Dept of Orthopedics
Geronimo Garcia, Medical Student, Brown University. Dept of Orthopedics
Liam Connolly, Medical Student, Brown University. Dept of Orthopedics
Sai Allu, Medical Student, Brown University. Dept of Orthopedics
Valentin Antoci, Medical Student, Brown University. Dept of Orthopedics
Christopher Born, MD, Professor, RI Hospital, Brown University. Dept of Orthopedics
Dioscaris Garcia, PhD, Assistant Professor, RI Hospital, Brown University. Dept of Orthopedics

Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:Background:

Due to the misuse of antibiotics, surgical site infections (SSIs) by antimicrobial−resistant (AMR)

pathogens are an increasing threat to the US healthcare system. Furthermore, the stagnant discovery

of new antibiotics requires the development of novel approaches to combat these infections. Thus,

research has turned to organometallics as a possible solution, specifically silver due to its multimodal

bactericidal properties. To harness silver's capabilities, we have developed a silver carboxylate

(AgCar) compound released via a titanium dioxide−PDMS matrix. In this study, we assess AgCar's ability

to induce reactive oxygen species (ROS) release and peroxidase (POD) activity in Methicillin−Resistant

S. aureus (MRSA) strains MW2 and VRS1 persister cells.
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Figure 1. Fold change of ROS presence in persister cells of MRSA strains MW2 and VRS1. 
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Antibiotic resistance has been steadily rising due to increased use of synthetic antibiotics, lack of

novel antibiotics, and poor stewardship, leading to a perilous 'post−antibiotic era.' Prompt innovation

is crucial to avoid millions of deaths from antibiotic−resistant infections by 2050. Organometallics

offer a potential solution, and our group has developed a silver carboxylate (AgCar) compound with

distinct bactericidal mechanisms. This study presents an overview of the release pharmacokinetics of

AgCar in Titanium dioxide−polydimethylsiloxane (TiO2−PDMS) matrix, its safety concerning human−derived

cell lines, antimicrobial efficacy, biofilm dysregulation, and impact on the viability of persister

cells.
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Figure 1: Biofilm Images of MRSA MW2 and VRS1 in response to silver carboxylate treatment: 

A, B, C, D, E, F, and G show confocal images of biofilms for MW2. Image A is an untreated 

biofilm, and Images B, C, D, and E were treated with 1x, 10x, 30x, and 300x AgCar, 

respectively. Image F was a positive control treated with 100% AgCar, Image G was treated with 

vehicle only. All biofilms were stained with SYPRO, TOTO-1, and Concanavalin A (594). 

 


